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ABSTRACT  

Drug biodistribution, bioavailability, efficacy and toxicity are unavoidably patient-

specific. Here, computational models are utilized to predict the deposition of 

nanoparticles in a patient-specific arterial tree as a function of the vascular architecture, 

flow conditions, receptor surface density, and nanoparticle properties. The Isogeometric 

Analysis framework, with an experimentally validated special boundary condition for the 

firm wall adhesion of nanoparticles, is used. The adhesion pattern correlates well with the 

spatial and temporal distribution of the wall shear rates. For the case considered, the 

larger (2.0 µm) particles adhere ≈ 2 times more in the lower branches of the arterial tree, 

whereas the smaller (0.5 µm) particles deposit more in the upper branches. A change in 

patient-specific attributes, such as the branching angle and receptor density, dramatically 

affect particle adhesion. Our computational framework can be used to rationally select 

nanoparticle properties in conjunction with patient specific attributes to personalize, thus 

optimize, therapeutic interventions. 

 

Graphical Abstract: Figure 1 

 

KEY WORDS: nanoparticles; rational design; mathematical modeling; vascular adhesion; 

personalized medicine 
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BACKGROUND 

It is well accepted that the outcome and safety of a therapeutic intervention is often 

affected by patient-specific attributes, at the gene, cell and organ levels 1, 2. It is also 

increasingly recognized that results from clinical trials do not necessarily apply to 

individual patients, not even to the patients that were directly enrolled in the trials 3. 

Every individual is shaped differently and the distribution, metabolism and elimination of 

drugs as well as their biochemical effects on the target cells are influenced by the patient 

age, genetic background and anatomical features. Computational modeling and 

nanomedicine are playing a major role in supporting the development of personalized 

therapeutic approaches 4-8. 

 

Computational modeling can capture the hierarchical complexity of biological systems 

and diseases over multiple scales – temporal and spatial – and include patient-specific 

information to personalize the outcome of the analysis. in silico modeling has been 

proven useful in orthopedic applications 9, 10, for the treatment of cardiovascular diseases 
11-14 and cancer 15, 16, and in pharmacogenomic analysis 6, 17. Segmental bone 

replacements can be optimally designed after a careful analysis of patient anatomical 

features and computation of the mechanical loads9. In cardiovascular diseases, the 

authentic geometry of the blood vessels and their mechanical properties have been 

incorporated in sophisticated computational tools to predict the distribution of wall shear 

stresses, risk of aneurysm rupture and to optimize the deployment of vascular stents 18-20. 

Multi-physic models have been developed for predicting the response of tumors to 

molecular-based, radiation and thermal ablation therapies 15, 16. Computational 

pharmacogenomics is used to predict in silico the efficacy, toxicity and possible 

resistance of drug molecules on different cell types 6, 16. 

 

On the other hand, a plethora of nanoparticle-based delivery systems have been 

developed over the last two decades for enhancing the tissue-specific accumulation of 

therapeutic molecules and the contrast generated by imaging agents. Indeed, the 

biodistribution and bioavailability of both therapeutic and imaging agents are 

dramatically affected by the size, shape, surface properties and mechanical stiffness (the 
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4Ss) of their carriers: the nanoparticles. This has been firstly predicted using 

mathematical models and then supported by experimental evidence, in vitro and in vivo 
21-23. Different fabrication strategies have been proposed to finely tune the geometrical, 

mechanical and surface properties of the nanoparticles 24-27. But how such four 

parameters (the 4Ss) can be rationally exploited in conjunction with patient-specific 

attributes to personalize and, thus optimize, therapeutic interventions is still largely 

unexplored. 

 

 
Figure 1. Reconstructing the patient-specific vascular geometry. The image shows, 
from left to right, the isocontour of a human heart, path extraction and editing of a small 
bifurcation portion from the left coronary artery (LCA) and reconstruction of the 
geometry ready for Isogeometric Analysis. Also, a nanoparticle with its ligand molecules 
is shown interacting with the receptor molecules decorating the surface of the endothelial 
cells in the vasculature. 
 

Along this line, a patient-specific computational model is here presented for predicting 

the nanoparticle lodging within an authentic vascular network. Hexahedral solid NURBS 

(Non-Uniform Rational B-Splines) are used to accurately mesh the tridimensional 

architecture of an arterial tree, derived from the Computed Tomography (CT) scan of a 

patient 28. The Finite Element Method (FEM), reformulated within the Isogeometric 

Analysis framework 29, is employed to solve for the fluid and particle transport into the 



Submitted to Nanomedicine: Nanotechnology, Biology, and Medicine (JN201230) 

	
  

	
   5	
  

authentic vasculature 14. Information at the micro and nanoscale are introduced in the 

computational model by developing a special boundary condition at the vessel wall, 

accounting for cell/nanoparticle adhesion 30. The model directly integrates information 

from the macroscale (vessel geometry and permeability, blood flow condition) with data 

pertaining to the micro and nanoscale (particle geometry, receptor density and affinity), 

thus avoiding massive, computationally inefficient discretization over multiple spatial 

and temporal scales. The proposed in silico model is first validated against in vitro 

parallel plate flow chamber experiments and then is applied for studying the effect of 

patient-specific attributes, such as the vascular geometry and receptor surface density, on 

the deposition of particles with different geometrical and surface properties within an 

authentic arterial tree. 

 

METHODS 

Reconstructing the patient-specific vascular geometry. The input CT Angiography 

imaging data are often of poor quality due to large motions of the heart, as it supplies 

blood to the circulatory system. This makes it difficult to construct analysis-suitable 

patient-specific coronary models. To circumvent this problem, the raw imaging data were 

passed through a preprocessing pipeline where the image quality is improved by 

enhancing the contrast, filtering noise, classifying, and segmenting regions of interest 28. 

A small bifurcation portion of the coronary tree was considered here including the left 

coronary artery (LCA), the left anterior descending artery (LAD) and the left circumflex 

artery (LCX) (Figure 1). The surface model of this bifurcation structure was extracted 

from the processed imaging data, and the vessel path was obtained after skeletonizing the 

volume bounded by the local luminal surface using Voronoi and Delaunay diagrams. The 

generated path can also be edited according to simulation requirements, e.g., extending 

the included branch angles to study how geometry such as the bifurcation angle 

influences particle delivery processes in coronary arteries. A skeleton-based sweeping 

method 28 was then used to generate hexahedral control meshes by sweeping a templated 

quadrilateral mesh of a circle along the arterial path. A template for the bifurcation 

configuration was used to decompose the geometry into three mapped meshable patches 

using the extracted skeleton. Each patch can be meshed using one-to-one sweeping 
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techniques. Some nodes in the control mesh lie on the surface, and some do not. We 

project nodes lying on the surface to the vascular surface. Finally, solid NURBS models 

were generated based on the constructed control meshes and they were employed in 

Isogeometric Analysis 31, 32 to simulate blood flow and particle delivery in the coronary 

arteries.  

	
  
Governing equations for the fluid flow and particle transport. A continuum-based 

approach was adopted to simulate blood flow and particle transport within a patient-

specific vascular network (Figure 1). Blood was modeled as an incompressible 

Newtonian fluid with a density (ρ) of 1060kg/m3 and a dynamic viscosity (µ) of 0.003 N-

s/m2, and the governing equations were formulated accordingly. Indeed, for sufficiently 

larger vessels (macrocirculation), the corpuscular component of blood (red blood cells, 

white blood cells and platelets) can be neglected and a Newtonian model for blood 

provides sufficiently accurate results 33, 34. The strong form of the continuity and 

momentum balance equations in the fluid domain Ω with its boundary Γ divided into 

three non-overlapping parts, the inflow (Γin) and outflow (Γout) boundaries and the 

vascular wall (Γs), can be written as: 

  (1) 

  (2) 

  (3) 

  (4)

  (5) 

  (6) 

where x is a point in the spatial domain Ω  and t is a point in the time domain [0,T]. In 

these equations, (x;t) represents the fluid velocity vector, p(x;t) the pressure, f the 

external body force, n the unit outward normal to the surface, denoted Γ , and (x;0) the 

initial velocity vector. An inflow velocity vector g(x;t) was specified at the inlet (Γin), a 

no-slip boundary condition (Eq.(4)) was prescribed at the rigid and impermeable vascular 
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wall (Γs) and a stress free outflow boundary condition (Eq.(5)) was implemented at the 

branch outlets (Γout). 

 

The mass transport of the particles was assumed to be governed by a scalar advection-

diffusion-reaction equation. This is a reasonable assumption for sufficiently small 

particles navigating in large vessels 35, 36. In the strong form, the transport problem can be 

stated as:  

  (7) 

  (8) 

  (9) 

  (10) 

  (11) 

	
  

where (x;t) is the particle concentration,  is the diffusivity tensor, and σ is the 

reaction coefficient. At the inlet (particle injection site) Γin, a Dirichlet boundary 

condition is prescribed (Eq. (8)) where C0 is the particle concentration given as:  

  (12) 

Here ti denotes the duration of particle injection. At the outflow , a homogenous 

Neumann boundary condition was specified (Eq.(9)); and a Robin-type boundary 

condition (Eq.(10)), a combination of the Dirichlet and Neumann conditions, was 

prescribed at the rigid wall interface (Γs), where Π is defined in the sequel as the vascular 

deposition parameter. 

Particle diffusivity was assumed to be isotropic and constant, and was determined from 

the Einstein-Stokes relation 

  (13) 

as a function of the particle size, where dp is the diameter of the particles. Here  

represents the Boltzmann thermal energy. Then  
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  (14) 

where I is the 3×3 identity matrix. The velocity field u in Eq.(7) was obtained from the 

solution of the Navier–Stokes equations (Eqs.(1)-(6)) with the assumption that the flow 

physics affects the mass transport, not vice versa. 

 

Boundary condition for particle adhesion to the vessel wall. The particle surface is 

assumed to be decorated with ligand molecules, uniformly distributed with a surface 

density ml, that can specifically interact with counter molecules (receptors) expressed on 

the vessel wall with a surface density mr  (Figure 1). The molecular interaction between 

ligands and receptors is characterized by an affinity constant Ka
0, at zero mechanical 

load. From 30, a probability of particle adhesion Pa can be derived as a function of its 

geometry (size and shape) and surface properties (ligand density, ligand type; surface 

electrostatic charge). The mathematical parameter Pa is defined as the probability of 

having at least one close ligand–receptor bond, and can be considered as a measurement 

of the strength of adhesion: the larger is Pa, the larger is the avidity and strength with 

which the particle firmly adheres to the wall. For a spherical particle of diameter dp, the 

probability of adhesion can be expressed as follows 30: 

  (15) 

where  is a characteristic length of the ligand–receptor bond, generally of the order of 

0.1 – 1 nm;  is the Boltzmann thermal energy (= 4.142×10-21 J); is the coefficient 

of hydrodynamic drag force on the spherical particle; is the wall shear stress; and S is 

the wall shear rate. In Eq.(15), the parameter r0 is the radius of adhesion 

  (16) 

with Δ the separation distance between the particle and the substrate, at equilibrium. An 

alternative representation of Eq.(15) is, 

  (17) 
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where  (= 0.023)  and  (≈ 1.369×1010 #/m2 for dp = 

0.5 µm and ≈ 3.400×109 for dp = 2 µm) are two governing parameters, and  (= 

2.39×1011 N-1) is a constant. In Eq.(17), α1, α2, the wall shear rate S and the particle 

diameter dp are the independent governing parameters. For convenience,  has been 

fixed to be 0.1 nm (see Table 1). 

 

Parameters Value 

Surface density of ligand molecules ml = 1015 #/m2 

Surface density of receptor molecules mr = 1013 #/m2 

Ligand-receptor affinity constant at zero load Ka
0 = 2.3×10-7 m2 

Characteristic length of ligand-receptor bond λ = 1×10-10m 

Dynamic viscosity of water µ = 0.001 N-s/m2 

Drag coefficient on the spherical particle  = 1.668 

 

Table 1. Adhesion model parameters used. 

 

The mass flux of particles (∂C/∂n) in the direction n normal to the wall can be related to 

the local increase in mass of particles adhering per unit surface  as  

  (18) 

which simply derives from mass balance at the surface (accumulation of mass over time). 

Note that Eq.(18) is not a boundary condition yet, in that is an unknown function. 

To close the system, an additional relation needs to be defined between  and 

. The number of particles per unit surface is in turn related to the volume 

concentration of particles at the wall through the equation 

  (19) 
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Note that Sdp/2 is the fluid velocity in the center of a particle in proximity of the wall. 

The term Π = PaSdp/2 is called the vascular deposition parameter, in that the larger is Π, 

the larger is the number of particle adhering stably to the vessel walls under flow. 

 

In the Supplementary Materials, the system of governing equations (1)-(19) is specialized 

to the case of a channel with a rectangular cross section simulating a parallel plate flow 

chamber, used for the in vitro validation of the proposed computational approach.  

 

RESULTS  

Predicting particle deposition in a parallel plate flow chamber apparatus. The 

implementation of the boundary condition for particle adhesion was first validated 

against in vitro experiments conducted in a parallel plate flow chamber apparatus. A 

schematic of the system and the geometry used for the computational analysis are 

presented in Supplementary Figure 1. The particles are injected in a 20 mm long channel 

with a rectangular cross section (10 × 0.274 mm) under controlled hydrodynamic 

conditions (fixed wall shear rate S). While the particles are transported downstream 

toward the waste, some of them can interact with and adhere firmly to the substrate. 

Details on the experimental conditions are provided in the Supplementary Materials.  

 

The number of particles adhering nadh per unit area A, normalized by the total number of 

injected particles ninj, is presented in Figure 2 for different wall shear rates, namely S = 

10, 75 and 200 s-1, and particle diameters. The experimental results (crosses with standard 

deviation bars) are compared with the numerical predictions (gray area), which are 

presented for different values of the parameters α1 and α2, as utilized in Eq.(17). The 

gray areas are obtained for a ± 5% variation of the mean value of α1 (= 0.023) (Figure 2 – 

left column) and α2 (≈ 9.44 ×109 for dp ≈ 0.7 µm; 1.388×109 for dp ≈ 5 µm; and 

1.031×109 for dp ≈ 7 µm) (Figure 2 – right column).  
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Figure 2. Comparison between in silico and in vitro results. The number of adhering 
particles nadh per unit surface area A normalized by the total number of injected particles 
ninj is plotted as a function of the particle diameter dp and for three different wall shear 
rates: (A) S = 10 s-1, (B) S = 75 s-1 and (C) S = 200 s-1. Black crosses with the standard 
deviation bars represent the experimental results obtained in a parallel plate flow chamber 
apparatus. The gray areas represent the in silico results obtained for values of the 
parameters α1 (left) and α2 (right) varying within ± 5% of their average values (α1 = 
0.023) and (α2 ≈ 9.44 ×109 for dp ≈ 0.7 µm; 1.388×109 for dp ≈ 5 µm; and 1.031×109 for 
dp ≈ 7 µm).   
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Three different adhesive behaviors are depicted as a function of the wall shear rate S: i) 

nadh grows steadily with dp, for S = 10 s-1 (Figure 2A); ii) nadh grows, reaches a maximum 

and then decreases with dp, for S = 75 s-1 (Figure 2B); iii) nadh decreases steadily with dp, 

S = 200 s-1 (Figure 2C). Particle adhesion is determined by the balance between 

interfacial adhesive interactions (specific and non-specific) and the dislodging 

hydrodynamic forces. At low S, (Figure 2A) the former dominates the latter, thus the 

steady increase in nadh up to dp ≈ 7 µm. Conversely, at high S, the adhesive forces cannot 

balance the dislodging forces, and nadh decreases steadily with dp (Figure 2C). At 

intermediate values of S, a maximum in adhesion appears for an optimal particle diameter 

(≈ 5 µm). For the conditions analyzed here, this happens for dp ≈ 5 µm, at S = 75 s-1. 

However, this maximum dp, as well as its absolute value, changes with the adhesive 

properties of both the particle and the substrate 30. Indeed, this maximum identifies the 

threshold in particle diameter below (above), which adhesive interactions prevail (do not 

prevail) over the dislodging hydrodynamic forces. Such a biphasic behavior was already 

predicted for the general case of oblate spheroidal particles as well 30, and correlates with 

the dependence of the vascular deposition parameter Π on dp (Supplementary Figure 2). 

Note that although the particles used in the flow chamber experiments were not decorated 

with any ligands, their adhesive behavior would follow the biphasic relationship of 

Eq.(17) due to the surface adsorption of non-specific molecules, mediating the 

interactions with the substrate. 

 

Figure 2 demonstrates that the implemented adhesive boundary condition can accurately 

predict the complex, biphasic behavior for particle deposition under flow. Only at large 

shear rates, S = 200 s-1, and for large particle diameters (> 5 µm), the numerical 

predictions significantly underestimate the number of adhering particles. In this respect, 

however, it should be noted that for S = 200 s-1 and dp > 5 µm, the absolute number of 

particles adhering is extremely small (≈ 2.5/mm2). Thus, both numerical and 

experimental inaccuracies could explain the observed discrepancy. It is also important to 

emphasize that due to the highly convective nature of the flow (Péclet number Pe >> 

1000), there appears to be little or no effect of the particle size on near wall accumulation, 
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as shown in Supplementary Figure 3. This implies that particle deposition is governed by 

the vascular deposition parameter Π, under the condition considered here. Also, the 

surface density of the adhering particles does not vary significantly over the channel 

length, as demonstrated in Supplementary Figure 4.  

 

Predicting particle transport and deposition in a patient-specific vascular network. 

The Isogeometric Analysis formulation was used to simulate the transport and wall 

adhesion of particles injected through a catheter in a patient-specific arterial tree. From 

the CT scan imaging data of a healthy volunteer, a hexahedral solid NURBS model for a 

portion of the left coronary artery (LCA) tree was generated following the steps described 

in 28. The geometry of the problem is presented in Figure 3A. A time-dependent pulsatile 

inflow condition 37, 38 with a period of 1 s (heart rate = 60 beats per minute) was imposed 

at the LCA inlet, where also a cylindrical catheter was located through which particles 

were injected, both radially and axially at a speed of 4 cm/s, for 5 cardiac cycles (5 s). 

The simulations were run on a computational mesh consisting of 55,100 quadratic 

NURBS elements for 14 cardiac cycles (14 s total) with a time step of 0.01 s employing 

the general solution strategies described in the Methods. Boundary layer meshes are used 

at the walls for more accurate computation of wall quantities, such as the wall shear rate. 

 

The time evolution of the particle volumetric concentration within the vascular network is 

presented in Figures 3B-F. With time, the particle distribution front moves from the LCA 

inlet, where the catheter is located, toward the downstream branch and eventually into the 

side branches of the left anterior descending (LAD – left) and circumflex (LCX – right) 

artery. At 1 s, the particle front has passed the bifurcation (Figure 3C); at 5 s, the particles 

are uniformly distributed within the vascular tree (Figure 3D); and at 14 s, they have left 

the LCX and LAD (Figure 3F). This distribution was obtained for the 0.5 µm particles.  

In the sequel, the particle transport and wall deposition are analyzed as a function of the 

particle size and patient-specific attributes, such as the vascular geometry and the 

receptor surface density. 
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Figure 3. Nanoparticle transport in a patient-specific vascular tree. (A) Schematic of 
the coronary artery (branches identified) with the inlet velocity profile (inset at the right) 
and applied boundary conditions. (B)-(F) Volumetric concentration C of nanoparticles, 
normalized by the concentration at the catheter outlet C0, at various times t post injection: 
(B) t = 0.2 s, (C) t = 1 s, (D) t = 5 s, (E) t = 10 s, and (F) t = 14 s.  
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First, two particles with different diameters, namely = 0.5 and 2 µm, were injected in 

the LCA. Figure 4 shows a side-by-side comparison of the time evolution for the wall 

surface concentration of the adhering particles, normalized by the injected dose. Three 

times are considered: 5, 10 and 14 s. For both particles, the surface concentration 

increases with time and becomes higher moving down the LCA, and approaching the 

LCX and LAD outlets. The larger particles (dp = 2 µm) exhibit about twice the adhesion 

of the smaller particles (dp = 0.5 µm), with a maximum normalized surface concentration 

of 7×10-8 and 2×10-8 cm-2, respectively. The smaller particles are observed to lodge more 

extensively in the upper branch (LCA) (Figure 4C). 

 

As discussed in the previous section, particle adhesion is mostly governed by the vascular 

deposition parameter Π and the shear rate at the wall S. Therefore, the variation of S 

along the vascular tree and the flow conditions were carefully quantified over time, as 

shown in Supplementary Figure 5. In the LCA, large shear rates are computed within the 

first 5 cardiac cycles (i.e., continuous injection), with values of the order of 500 – 1000   

s-1, occurring in proximity of the branching point. Much lower values are computed in the 

LAD and LCX with S < 200 s-1. After 5 s, when the flow is no longer perturbed by the 

catheter injection, the wall shear rate decreases along the vascular tree with characteristic 

values ranging between 300 – 400 s-1 in the LCA and lower than 100 s-1 in the LAD and 

LCX. A comparison of Figure 4 and Supplementary Figure 5d reveals that the surface 

deposition patterns for the particles correlate well with the corresponding time averaged S 

distributions. 

 

In the lower branches (LAD and LCX), before and after injection, the wall shear rate is 

generally equal to or lower than ≈ 100 s-1. Within this S range, the vascular deposition 

parameter Π for the 2 µm particles is, on the average, larger than that for the 0.5 µm 

particles (Supplementary Figure 2: at S = 50 s-1, Π ≈ 3.5×10-6 mm/s for the 2 µm 

particles, Π ≈ 1.75×10-6 mm/s for the 0.5 µm particles), thus explaining the larger 

adhesion (≈ 2 times) of the former compared to the latter. On the other hand, for larger 

dp
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Figure 4. Nanoparticle adhesion to the vessel walls: effect of nanoparticle size. The 
normalized surface density of adhering nanoparticles is plotted along the arterial tree at 
various times t post injection, namely (A) t = 5 s, (B) t = 10 s and (C) t = 14 s. The left 
and right columns present in silico data for the 0.5 and 2.0 µm particle, respectively, in 
terms of particle number per unit area normalized by the injected dose [cm-2]. 
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values of S, as those experienced in the LAD, the 0.5 µm adhere more effectively than the 

2 µm particles, in agreement with what is shown in Figure 4 (see also Supplementary 

Figure 2: at  S = 500 s-1, Π ≈ 0 mm/s for the 2 µm particles, and Π ≈ 0.5×10-7 mm/s for 

the 0.5 µm particles). Incidentally, these observations are consistent with those reported 

in the literature where it has been shown that low and oscillating S zones are associated 

with enhanced deposition and uptake of lipoprotein (LDL), and correlate well with 

atherosclerotic regions 39-43. Because of the pulsatile nature of blood flow in the 

coronaries, the associated complex flow features create recirculation zones near the 

bifurcation resulting in alternate areas of high and low S levels (Supplementary Figures 

5c, d). It should also be noted that the injection flow rate from the catheter can 

significantly alter the wall shear rate distribution and thus affect the particle deposition 

rates and patterns.  

 

Second, the branching angle between the LAD and LCX was increased from 76.8° to 

106.8°, in the same patient-specific coronary geometry. As expected, the velocity 

magnitude and the wall shear rate distribution are significantly affected by such a change 
44. While the flow features appear similar in the LCA, the velocity magnitude and 

distribution become noticeably different as the branching point is approached, and 

moving downstream towards the two outlets (Supplementary Figure 5). First, a larger 

recirculation area is seen at the branching. Second, due to the sharper bend encountered 

as the blood flows from the LCA to the LAD, a higher S zone appears at the LCA-LAD 

junction. Finally, the flow patterns in the LAD and LCX are different, introducing an 

asymmetry in the vascular tree. This difference is more noticeable in the post catheter 

injection period. As a consequence of the change in the S distribution, particles were 

observed to adhere more at the walls of the LAD rather than in the LCX. For both particle 

sizes, this is shown in Figure 5 and additional details are provided in Supplementary 

Figure 6.  

 

Third, the contribution of the over-expression of receptor molecules on particle vascular 

deposition is investigated. For this, the surface density in the LAD is increased by a mr
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Figure 5. Nanoparticle adhesion to the vessel walls: effect of vascular geometry. The 
normalized surface density of adhering nanoparticles is plotted along the arterial tree at t 
= 14 s, post injection. The left and right columns present in silico data for the 0.5 and 2.0 
µm particles, respectively. The top and bottom rows present in silico data for the smaller 
(76.8°) and larger (106.8°) branching angles, respectively. Data are presented in particle 
number per unit area normalized by the injected dose [cm-2]. 
 

factor of 10 compared to other regions in the vascular tree. A side-by-side comparison of 

the time evolution for the particle distribution is presented in Figure 6. Quite expectedly, 

particle concentration in the LAD is observed to be larger by almost an order of 

magnitude compared to the previous case, with no receptor over-expression. Note that the 

vascular deposition parameter Π grows almost linearly with mr. Particle adhesion is 

considerably enhanced because of the greater receptor availability that promotes specific 

interaction and increases the likelihood of ligand-receptor bond formation. It is also very 
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interesting to observe that the increased receptor density tends to support a larger particle 

deposition within the recirculation zone as compared to other regions (Supplementary 

Figure 7).  

 

The presented results demonstrate that the adhesion pattern of intravascularly injected 

particles follows the distribution of the wall shear rates and is therefore significantly 

affected by the vascular geometry. Larger particles (2.0 µm in diameter) adhere more in 

the lower branches of the arterial tree, where the wall shear rates S are moderate (< 200  

s-1); whereas smaller particles (0.5 µm in diameter) adhere more in the upper branches, 

where S is higher. It is also shown that as the branching angle in the arterial tree 

increases, the adhesion patterns become non-symmetric: patients with larger branching 

angles (≈ 106.8°) would receive more nanoparticles in the LAD than in the LCX. On the 

other hand, nanoparticles would distribute equally in the two arterial branches for patients 

with smaller branching angles  (≈ 76.8°).  Additionally, upregulation in the expression of 

vascular receptors is responsible for a non-symmetric and non-uniform vascular adhesion 

of the nanoparticles. These results clearly emphasize the importance of including patient-

specific information for a proper selection of vascular delivery systems. 

 

In the near future, the following scenarios can be envisioned where computational 

modeling and nanoparticle engineering would be intimately integrated. Currently, MRI 

and CT are the most easily accessible, minimally invasive systems for whole human body 

imaging and, in conjunction with ultrasonic measurements, can provide information on 

the three-dimensional architecture and velocity field in a patient-specific vasculature. 

Nanoparticles can be engineered as potent MRI, or CT, contrast agents (imaging 

nanoconstructs) 45-48, molecularly targeted to a specific receptor family expressed over 

the diseased endothelial walls. This could be the integrin family on the tumor vasculature, 

inflammatory adhesion molecules in cardiovascular diseases and several others 49. The 

number of adhering imaging nanoconstructs can be quantified by relating the contrast 

enhancement measured by the clinical scanner with the imaging properties of the single 

nanoconstruct. Knowing the number of adhering nanoparticles, the vascular geometry 

and mean hydrodynamic conditions, the computational model can be used to back  
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Figure 6. Nanoparticle adhesion to the vessel walls: effect of surface density of 
vascular receptors. The normalized surface density of 0.5 µm adhering nanoparticles is 
plotted along the arterial tree at various times t post injection: (A) t = 1 s, (B) t = 5 s and 
(C) t = 14 s. Data are presented for a uniform receptor density (mr = 109 #/cm2) along the 
vasculature (left column) and for an LAD receptor density 10 times larger than that in the 
LCA and LCX (right column). Note that the color map scales are different for the two 
cases and give the particle number per unit area normalized by the injected dose [cm-2]. 
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calculate the mean receptor surface density following a reverse engineering approach. 

This would be extremely useful for the in vivo rapid screening of potential vascular 

targets in individual patients 49. With all this information at hand, the optimal particle 

configuration, in terms of size, shape, surface and stiffness can be identified using the 

computational models with the objective of maximizing drug release at the target site 

while minimizing non-specific sequestration in healthy tissue. Indeed, these scenarios are 

within reach but can only be achieved with an orchestrated development of potent, safe 

nanoparticle-based imaging tools and accurate, efficient computational methods. 
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SUPPLEMENTARY MATERIALS 
 

in silico Vascular Modeling for 

Personalized Nanoparticle Delivery 

 
S. S. Hossain, Y. Zhang, X. Liang, F. Hussain, M. Ferrari, T. J. R. Hughes, P. Decuzzi 

 
Parallel plate flow chamber experiments. A parallel plate flow chamber system from 

GlycoTech Corporation was employed to study the particle transport and adhesion 

dynamics under controlled flow conditions (Supplementary Figure 1A). The flow 

chamber system comprises a PMMA flow deck, a silicon rubber gasket and a collagen-

coated glass cover slip. Through silastic tubing, the inlet and outlet bores on the flow 

deck were connected to a syringe, mounted on a pump (Harvard Apparatus, MA), and to 

the waste, respectively. The syringe pump allowed for an accurate control of the flow rate 

in the chamber. The parallel plate flow chamber system was placed on the stage of a 

Nikon Ti-Eclipse epi-fluorescence inverted microscope. The cover slip was coated with 

collagen. Briefly, the cover slip was first cleaned in a petri dish with 70% Ethanol, and 

then exposed to a collagen solution (Sigma C8919, Type 1) obtained from calf skin at a 

concentration of about 50 µg/cm2. After about 5 h at room temperature, the cover slip 

was rinsed with PBS and left to dry under a biological hood. The silicon rubber gasket, 

which defines the dimensions of the channel, had a thickness of 0.274 mm, a length of 20 

mm and a width of 10 mm. By controlling the volumetric flow rate with the syringe 

pump and the geometry of the chamber, wall shear rates S of 10, 75 and 200 s-1 were 

generated. Spherical fluorescent particles of different sizes (Fluoresbrite® YG 

Microspheres) were used, with a nominal diameter of 0.75, 3.0 and 6.0 µm. The actual 

diameter was dp = 0.720, 0.4899 and 6.596 µm. The particles were injected in the parallel 

plate flow chamber using the syringe pump. The dynamics of the particles under flow 

was monitored using dry microscope objectives at different magnifications, 10x, 20x and 

40x. Images within the region of interest (658 × 496 pixel) were captured with an 

acquisition rate as high as possible, in relation with the exposure time required to capture 

the fluorescent particles. The resulting images were analyzed to quantify the number of 
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particles adhering over the substrate. Data were presented in terms of number of adhering 

particles (nadh) per unit area (A) normalized by the total number of injected particles (ninj). 

Particles were dispersed in a Millipore water solution and counted using a Multisizer 4 

Coulter Particle Counter (Beckman Coulter). Before each experiment, the particle 

solution was sonicated for 5 minutes to prevent the formation of aggregates.  

 

Governing equations for the particle transport and adhesion in a parallel plate flow 

chamber. The Supplementary Figure 1B depicts the problem setup, which resembles the 

geometry of a parallel plate flow chamber: a channel with a rectangular cross section of 

20 mm length (L). As the width of the channel (b = 10 mm) is substantially larger than 

the height (h = 0.274 mm), a purely 2D analysis was considered. For a fully developed 

flow, the velocity profile within the channel is parabolic, such that 

  (S1) 

Here, Q is the flow rate per unit channel width with the velocity components ,  and 

 in the ,  and z directions, respectively. Consequently, the wall shear rate S is 

uniform throughout the channel and has the form 

  (S2) 

For the particle transport in the rectangular chamber, the governing equation Eq.(7) can 

be written explicitly as: 

  (S3) 

 
where is the particle isotropic diffusivity defined in Eq.(13). Note that σ was set to zero 

in that no reaction occurs in the flow domain. Eq.(S3) is subjected to the following initial 

and boundary conditions. Particles were released into the fluid stream at the center of the 

inlet surface for a time period of ti = 30 seconds. Hence, at the inlet boundary, for t <ti  
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where, yc is the height of the area of injection; and at all other times  

  (S5) 

At the channel outlet, a zero flux boundary condition was prescribed 

  (S6) 

At the wall ( ), following Eq.(18), the boundary condition on particle adhesion 

was imposed as 

  (S7) 

Eqs.(S3)-(S7) were solved by applying Finite Element based Isogeometric Analysis 1, 2 

that uses NURBS to describe the geometry. Employing quadratic NURBS for the spatial 

discretization, a residual-based multiscale method 3 was implemented to solve the system 

of equations with the generalized−α method 4, 5 for time advancement (readers are 

referred to the numerical procedures described in 6 for further details). The simulations 

were run with a time step of 0.05 s until all the particles left the fluid domain. A 77,824 

element quadratic NURBS mesh with boundary layer refinement (higher resolution) was 

used to resolve the concentration boundary layers occurring near the wall and the inlet 

(i.e., to better capture the concentration gradients). Analyses run with a finer mesh and a 

greater number of time steps showed no observable differences in the solution. Particles 

of three different sizes with diameters dp = 0.720, 4.899, and 6.596 µm under three 

different wall shear rate cases, namely S = 10 s-1, 75 s-1 and 200 s-1 were considered. In all 

three cases, the Péclet number was high (Pe >> 1000), making advection the dominant 

mode of particle transport rather than diffusion. To eliminate overshoot and undershoot 

near the inlet of the channel, the YZβ discontinuity capturing scheme 7 was employed.  
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Supplementary Figure 1. Transport and adhesion of nanoparticles in a parallel plate flow 
chamber (PPFC) apparatus. (A) Schematic representation of the experimental system used for 
the in vitro experiments including an inverted epi-fluorescent microscope, a syringe pump and the 
PPFC. (B) Geometry and boundary conditions for the transport and adhesion problem specialized 
to the PPFC. 
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Supplementary Figure 2. Vascular deposition parameter Π. Variation of the vascular 
deposition parameter Π as a function of particle size dp  under different wall shear rates:  (A) S = 
10 s-1, (B) S = 50 s-1, (C) S = 100 s-1, (D) S = 500 s-1, (E) S = 1000 s-1, and (F) S = 1300 s-1. 
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Supplementary Figure 3. Variation of the wall volumetric concentration along the PPFC 
length. Wall volumetric concentration C, normalized by the inlet volumetric concentration C0, for 
different particle sizes under a shear rate of S = 10 s-1 at (A) t = 5 s, (B) t = 10 s, (C) t = 35 s, and 
(D) t = 138 s. The coordinate z represents the distance from the inlet, along the channel length. 
The particle volumetric concentration C varies with time and location. At 138 s, C drops to zero 
meaning that all the injected particles have either adhered to the substrate or have left the 
chamber.  
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Supplementary Figure 4. Average wall surface concentration of nanoparticles along the 
PPFC length. The average surface concentration ψ of the particles depositing on the chamber 
substrate, computed over time and normalized by the number of injected particles ninj,, is plotted 
along the channel at the steady state (zero volumetric concentration in the chamber) under 
different hydrodynamic conditions: (A) S = 10 s-1, (B) S = 75 s-1, and  (C) S = 200 s-1. The 
coordinate z represents the distance from the inlet, along the channel length.  ψ  is quite uniform 
along the channel and independent of the longitudinal coordinate z. Although a slight non-
uniform distribution is observed at the lower shear rate (S = 10 s-1), the ψ  variation is still within 
10%. 
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Supplementary Figure 5a. Effect of the vascular geometry on the wall shear rate S (during 
continuous catheter infusion). The spatial distribution of the wall shear rate S in s-1 for the two 
vascular geometries (branching angles of 76.8° and 106.8°) at different times t, during the first 
second of catheter infusion. 
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Supplementary Figure 5b. Effect of the vascular geometry on the wall shear rate S (post 
catheter infusion). The spatial distribution of the wall shear rate S in s-1 for the two vascular 
geometries (branching angles of 76.8°  and 106.8°) at different times t, during the first second 
post catheter infusion. 
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Supplementary Figure 5c. Effect of the vascular geometry on the velocity distribution 
(during catheter infusion). The velocity magnitude [cm/s] for the two vascular geometries 
(branching angles of 76.8° and 106.8°) at different times t, during the first second of catheter 
infusion. 
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Supplementary Figure 5d. Effect of the vascular geometry on the mean walls shear rate 
distribution (insight at the branching point). The distribution of the mean wall shear rate S in  
s-1, time averaged over the duration of simulation (= 14 s), for the two vascular geometries 
(branching angles of 76.8°  and 106.8°). Insets highlight the recirculation zones with the 
corresponding vector representation (length of the arrow signifying the magnitude).  
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Supplementary Figure 6a. Effect of the vascular geometry on surface particle adhesion (0.5 
µm particles). Temporal and spatial distribution for the surface density of firmly adhering 
particle along the vascular tree. The surface concentration is normalized against the total number 
of particles injected [cm-2], for two vascular geometries (branching angles of 76.8° and 106.8°). 
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Supplementary Figure 6b. Effect of the vascular geometry on surface particle adhesion at 
14 s. Spatial distribution for the surface density of firmly adhering particles along the vascular 
tree. The surface concentration is normalized against the total number of particles injected [cm-2], 
for two vascular geometries (branching angles of 76.8° and 106.8°). Top row is for 0.5 µm 
particles, whereas the bottom row is for 2.0 µm particles. Insets highlight the distribution at the 
branch and within the recirculation zones. 
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Supplementary Figure 7. Effect of the surface receptor density on particle adhesion. The 
surface concentration of 0.5 µm firmly adhering particles, normalized against the total number of 
particles injected [cm-2], is shown at t = 14 s. Two cases are considered: uniform receptor density 
along the whole arterial three (left); and 10 times higher receptor density in the LAD as compared 
to the LCA and LCX (right). Note that the color map scales are different for the two cases. Insets 
highlight the surface particle concentration at the branch and within the recirculation zones. 
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